
Package: ptools (via r-universe)
October 13, 2024

Title Tools for Poisson Data

Version 2.0.0

Maintainer Andrew Wheeler <apwheele@gmail.com>

Description Functions used for analyzing count data, mostly crime
counts. Includes checking difference in two Poisson counts
(e-test), checking the fit for a Poisson distribution, small
sample tests for counts in bins, Weighted Displacement
Difference test (Wheeler and Ratcliffe, 2018)
<doi:10.1186/s40163-018-0085-5>, to evaluate crime changes over
time in treated/control areas. Additionally includes functions
for aggregating spatial data and spatial feature engineering.

License MIT + file LICENSE

URL https://github.com/apwheele/ptools

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Imports partitions, sp, raster, igraph, RANN, spatstat.geom,
spatstat.utils, sf, stats, methods

Depends R (>= 3.0.0)

VignetteBuilder knitr

Repository https://apwheele.r-universe.dev

RemoteUrl https://github.com/apwheele/ptools

RemoteRef HEAD

RemoteSha 31c972b81de9a23b176da1d7726c50c61e322d40

1

https://doi.org/10.1186/s40163-018-0085-5
https://github.com/apwheele/ptools

2 bisq_xy

Contents

bisq_xy . 2
buff_sp . 4
check_pois . 5
count_xy . 6
dcount_xy . 7
dist_xy . 8
e_test . 9
hex_area . 11
hex_dim . 12
hex_wd . 13
idw_xy . 14
kern_xy . 15
near_strings1 . 16
near_strings2 . 17
nyc_bor . 19
nyc_cafe . 19
nyc_liq . 20
nyc_shoot . 20
pai . 21
pai_summary . 23
pois_contour . 24
powalt . 25
prep_grid . 27
prep_hexgrid . 28
scanw . 30
small_samptest . 31
vor_sp . 33
wdd . 34
wdd_harm . 36

Index 38

bisq_xy Bisquare weighted sum

Description

Given a base X/Y dataset, calculates bisquare weighted sums of points from feature dataset

Usage

bisq_xy(base, feat, bandwidth, weight = 1)

bisq_xy 3

Arguments

base base dataset (eg gridcells), needs to be SpatialPolygonsDataFrame

feat feature dataset (eg another crime generator), needs to be SpatialPointsDataFrame

bandwidth distances above this value do not contribute to the bi-square weight

weight if 1 (default), does not use attribute weights, else pass in string that is the variable
name for weights in feat

Details

This generates bi-square distance weighted sums of features within specified distance of the base
centroid. Bisquare weights are calculated as:

wij = [1− (dij/b)
2]2

where d_ij is the Euclidean distance between the base point and and the feature point. If d < b, then
w_ij equals 0. These are then multiplied and summed so each base point gets a cumulative weighted
sum. See the GWR book for a reference. Uses loops and calculates all pairwise distances, so can be
slow for large base and feature datasets. Consider aggregating/weighting feature dataset if it is too
slow. Useful for quantifying features nearby (Groff, 2014), or for egohoods (e.g. spatial smoothing
of demographic info, Hipp & Boessen, 2013).

Value

A vector of bi-square weighted sums

References

Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically weighted regression:
the analysis of spatially varying relationships. John Wiley & Sons.

Groff, E. R. (2014). Quantifying the exposure of street segments to drinking places nearby. Journal
of Quantitative Criminology, 30(3), 527-548.

Hipp, J. R., & Boessen, A. (2013). Egohoods as waves washing across the city: A new measure of
“neighborhoods”. Criminology, 51(2), 287-327.

See Also

dist_xy() for calculating distance to nearest

count_xy() for counting points inside polygon

kern_xy() for estimating gaussian density of points for features at base polygon xy coords

bisq_xy() to estimate bi-square kernel weights of points for features at base polygon xy coords

idw_xy() to estimate inverse distance weights of points for features at base polygon xy coords

4 buff_sp

Examples

data(nyc_cafe); data(nyc_bor)
gr_nyc <- prep_grid(nyc_bor,15000)
gr_nyc$bscafe <- bisq_xy(gr_nyc,nyc_cafe,12000)

buff_sp Creates buffer of sp polygon object

Description

Creates buffer of sp polygon object. Intended to replace raster::buffer, which relies on rgeos

Usage

buff_sp(area, radius, dissolve = TRUE)

Arguments

area SpatialPolygon or SpatialPolygonDataFrame that defines the area
radius scaler for the size of the buffer (in whatever units the polygon is projected in)
dissolve boolean (default TRUE), to dissolve into single object, or leave as multiple ob-

jects

Details

Under the hood, this converts sp objects into sf objects and uses st_buffer. When dissolve=TRUE,
it uses st_union(area) and then buffers.

Value

A SpatialPolygonDataFrame object (when dissolve=FALSE), or a SpatialPolygon object (when
dissolve=TRUE)

Examples

library(sp) #for sp plot methods
large grid cells
data(nyc_bor)
res <- buff_sp(nyc_bor,7000)
plot(nyc_bor)
plot(res,border='BLUE',add=TRUE)

When dissolve=FALSE, still returns individual units
that can overlap
res2 <- buff_sp(nyc_bor,7000,dissolve=FALSE)
plot(res2)

check_pois 5

check_pois Checks the fit of a Poisson Distribution

Description

Provides a frequency table to check the fit of a Poisson distribution to empirical data.

Usage

check_pois(counts, min_val, max_val, pred, silent = FALSE)

Arguments

counts vector of counts, e.g. c(0,5,1,3,4,6)

min_val scaler minimum value to generate the grid of results, e.g. 0

max_val scaler maximum value to generate the grid of results, e.g. max(counts)

pred can either be a scaler, e.g. mean(counts), or a vector (e.g. predicted values
from a Poisson regression)

silent boolean, do not print mean/var stat messages, only applies when passing scaler
for pred (default FALSE)

Details

Given either a scaler mean to test the fit, or a set of predictions (e.g. varying means predicted from
a model), checks whether the data fits a given Poisson distribution over a specified set of integers.
That is it builds a table of integer counts, and calculates the observed vs the expected distribution
according to Poisson. Useful for checking any obvious deviations.

Value

A dataframe with columns

• Int, the integer value

• Freq, the total observed counts within that Integer value

• PoisF, the expected counts according to a Poisson distribution with mean/pred specified

• ResidF, the residual from Freq - PoisF

• Prop, the observed proportion of that integer (0-100 scale)

• PoisD, the expected proportion of that integer (0-100 scale)

• ResidD, the residual from Prop - PoisD

6 count_xy

Examples

Example use for constant over the whole sample
set.seed(10)
lambda <- 0.2
x <- rpois(10000,lambda)
pfit <- check_pois(x,0,max(x),mean(x))
print(pfit)
82% zeroes is not zero inflated -- expected according to Poisson!

Example use if you have varying predictions, eg after Poisson regression
n <- 10000
ru <- runif(n,0,10)
x <- rpois(n,lambda=ru)
check_pois(x, 0, 23, ru)

If you really want to do a statistical test of fit
chi_stat <- sum((pfit$Freq - pfit$PoisF)^2/pfit$PoisF)
df <- length(pfit$Freq) - 2
stats::dchisq(chi_stat, df) #p-value
I prefer evaluating specific integers though (e.g. zero-inflated, longer-tails, etc.)

count_xy Count of points in polygon

Description

Given a base X/Y dataset, calculates number of feature points that fall inside

Usage

count_xy(base, feat, weight = 1)

Arguments

base base dataset (eg gridcells), needs to be SpatialPolygonsDataFrame

feat feature dataset (eg another crime generator), needs to be SpatialPointsDataFrame

weight if 1 (default), does not use weights, else pass in string that is the variable name
for weights in feat

Details

This generates a count (or weighted count) of features inside of the base areas. Both should be
projected in the same units. Uses sp::over() methods in the function.

Value

A vector of counts (or weighted sums)

dcount_xy 7

References

Wheeler, A. P. (2019). Quantifying the local and spatial effects of alcohol outlets on crime. Crime
& Delinquency, 65(6), 845-871.

See Also

dist_xy() for calculating distance to nearest

dcount_xy() for counting points within distance of base polygon

kern_xy() for estimating gaussian density of points for features at base polygon xy coords

bisq_xy() to estimate bi-square kernel weights of points for features at base polygon xy coords

idw_xy() to estimate inverse distance weights of points for features at base polygon xy coords

Examples

data(nyc_liq); data(nyc_bor)
gr_nyc <- prep_grid(nyc_bor,10000)
gr_nyc$liq_cnt <- count_xy(gr_nyc,nyc_liq)
gr_nyc$table_cnt <- count_xy(gr_nyc,nyc_cafe,'SWC_TABLES')
head(gr_nyc@data)
sp::spplot(gr_nyc,zcol='liq_cnt')

dcount_xy Count of points within distance of polygon

Description

Given a base X/Y dataset, calculates number of feature points that are within particular distance

Usage

dcount_xy(base, feat, d, weight = 1)

Arguments

base base dataset (eg gridcells), needs to be SpatialPolygonsDataFrame

feat feature dataset (eg another crime generator), needs to be SpatialPointsDataFrame

d scaler distance to count (based on polygon boundary for base, not centroid)

weight if 1 (default), does not use weights, else pass in string that is the variable name
for weights in feat

Details

This generates a count (or weighted count) of features within specified distance of the base polygon
border. Both should be projected in the same units. Uses raster::buffer() on feat dataset
(which calls rgeos) and sp::over functions.

8 dist_xy

Value

A vector of counts (or weighted sums)

References

Groff, E. R. (2014). Quantifying the exposure of street segments to drinking places nearby. Journal
of Quantitative Criminology, 30(3), 527-548.

See Also

dist_xy() for calculating distance to nearest

count_xy() for counting points inside polygon

kern_xy() for estimating gaussian density of points for features at base polygon xy coords

bisq_xy() to estimate bi-square kernel weights of points for features at base polygon xy coords

idw_xy() to estimate inverse distance weights of points for features at base polygon xy coords

Examples

data(nyc_cafe); data(nyc_bor)
gr_nyc <- prep_grid(nyc_bor,15000)
gr_nyc$dcafe_8k <- dcount_xy(gr_nyc,nyc_cafe,8000)
head(gr_nyc@data)

dist_xy Distance to nearest based on centroid

Description

Given a base X/Y dataset, calculates distance to nearest for another feature X/Y dataset

Usage

dist_xy(base, feat, bxy = c("x", "y"), fxy = c("x", "y"))

Arguments

base base dataset (eg gridcells)

feat feature dataset (eg another crime generator)

bxy vector of strings that define what the base xy fields are defined as, defaults
c('x','y')

fxy vector of strings that define what the base xy fields are defined as, defaults
c('x','y')

e_test 9

Details

This generates a distance to nearest, based on the provided x/y coordinates (so if using polygons
pass the centroid). This uses kd-trees from RANN, so should be reasonably fast. But I do no
projection checking, that is on you. You should not use this with spherical coordinates. Useful for
feature engineering for crime generators.

Value

A vector of distances from base dataset xy to the nearest feature xy

References

Caplan, J. M., Kennedy, L. W., & Miller, J. (2011). Risk terrain modeling: Brokering criminological
theory and GIS methods for crime forecasting. Justice Quarterly, 28(2), 360-381.

Wheeler, A. P., & Steenbeek, W. (2021). Mapping the risk terrain for crime using machine learning.
Journal of Quantitative Criminology, 37(2), 445-480.

See Also

count_xy() for counting points inside of base polygon

dcount_xy() for counting points within distance of base polygon

kern_xy() for estimating gaussian density of points for features at base polygon xy coords

bisq_xy() for estimate bi-square kernel of points for features at base polygon xy coords

idw_xy() for estimate inverese distance weighted of points for features at base polygon xy coords

Examples

data(nyc_bor); data(nyc_cafe)
gr_nyc <- prep_grid(nyc_bor,15000,clip_level=0.3)
gr_nyc$dist_cafe <- dist_xy(gr_nyc,nyc_cafe)
head(gr_nyc@data)
sp::spplot(gr_nyc,zcol='dist_cafe')

e_test Poisson E-test

Description

Tests differences in two Poisson means or rates.

Usage

e_test(k1, k2, n1 = 1, n2 = 1, d = 0, eps = 1e-20, silent = FALSE)

10 e_test

Arguments

k1 scaler Poisson count

k2 scaler Poisson count

n1 scaler divisor for k1 (e.g. rate per unit time or per area), default 1

n2 scaler divisor for k2 (e.g. rate per unit time or per area), default 1

d scaler amends the null test by a constant amount, default 0

eps scaler where to terminate sum in testing larger deviations, default 1e-20

silent boolean if TRUE, does not print error messages

Details

This e-test tests the differences in two Poisson counts or rates. The null is more formally:

k1/n1 = k2/n2 + d

Note, I would be wary using the test for Poisson counts over 100 (the tail approximation in the
sums will have issues, as the PMF is so spread out). (It is also the case with very large k’s, e.g.
e_test(4000,4000) my function could run out of memory.) In that case may use the n arguments
to make it a rate per some unit time (which can change the p-value, although for smaller counts/rates
should be very close).

Value

A scaler p-value. Will return -1 if inputs don’t make sense and print an error message, e.g.
e_test(0,0) is undefined and will return a -1.

References

Krishnamoorthy, K., & Thomson, J. (2004). A more powerful test for comparing two Poisson
means. Journal of Statistical Planning and Inference, 119(1), 23-35.

See Also

wdd(), can use that function for a normal based approximation to the difference in Poisson means
as well as pre/post designs

Examples

For small N, changes in rates should result in same p-value minus floating point differences
e_test(3,0)
e_test(3,0,2,2)

Not defined
e_test(0,0) #returns -1 and prints warning

The same rates
e_test(20,10,4,2)
e_test(10,5,2,1) #not quite the same

hex_area 11

Order of counts/rates should not matter
e_test(6,2) #second example from Krishnamoorthy article
e_test(2,6) #when d=0, can switch arguments and get the same p-value

These are not the same however, due to how the variance estimates work
e_test(3,2)
e_test(3,1,d=1)

hex_area Get area of hexagon given length of side

Description

The length of the side is half of the length from vertex to vertex (so height in geom_hex).

Usage

hex_area(side)

Arguments

side scaler

Details

For use with ggplot and geom_hex binwidth arguments, which expects arguments in width/height.
I want hexagons in maps to be a specific area. See this blog post for a specific use case with ggplot.

Value

A scaler for the width

See Also

hex_wd() for estimating the width given the height hex_dim() for estimating width/height given
area

Examples

area_check <- 1000
wh <- hex_dim(area_check^2) #e.g. a square kilometer if spatial units are in meters
area <- hex_area(wh[1]/2) #inverse operation
all.equal(area_check,sqrt(area))
wi <- hex_wd(wh[1])
all.equal(wh[2],wi)

https://andrewpwheeler.com/2019/08/07/making-a-hexbin-map-in-ggplot/

12 hex_dim

hex_dim Get dimensions of hexagon given area

Description

Get dimensions of hexagon given area

Usage

hex_dim(area)

Arguments

area scaler

Details

For use with ggplot and geom_hex binwidth arguments, which expects arguments in width/height.
I want hexagons in maps to be a specific area. See this blog post for a specific use case with ggplot.

Value

a vector with two elements, first element is the height (vertex to vertex), the second element is the
width (side to side)

See Also

hex_wd() for estimating the width given the height hex_area() for estimating the area given side
length

Examples

area_check <- 1000
wh <- hex_dim(area_check^2) #e.g. a square kilometer if spatial units are in meters
area <- hex_area(wh[1]/2) #inverse operation
all.equal(area_check,sqrt(area))
wi <- hex_wd(wh[1])
all.equal(wh[2],wi)

https://andrewpwheeler.com/2019/08/07/making-a-hexbin-map-in-ggplot/

hex_wd 13

hex_wd Get width of hexagon given height

Description

Get width of hexagon given height

Usage

hex_wd(height)

Arguments

height scaler

Details

For use with ggplot and geom_hex binwidth arguments, which expects arguments in width/height.
I want hexagons in maps to be a specific area. See this blog post for a specific use case with ggplot.

Value

A scaler for the width

See Also

hex_area() for estimating the area given side length hex_dim() for estimating width/height given
area

Examples

area_check <- 1000
wh <- hex_dim(area_check^2) #e.g. a square kilometer if spatial units are in meters
area <- hex_area(wh[1]/2) #inverse operation
all.equal(area_check,sqrt(area))
wi <- hex_wd(wh[1])
all.equal(wh[2],wi)

https://andrewpwheeler.com/2019/08/07/making-a-hexbin-map-in-ggplot/

14 idw_xy

idw_xy Inverse distance weighted sums

Description

Given a base X/Y dataset, calculates clipped inverse distance weighted sums of points from feature
dataset

Usage

idw_xy(base, feat, clip = 1, weight = 1)

Arguments

base base dataset (eg gridcells), needs to be SpatialPolygonsDataFrame
feat feature dataset (eg another crime generator), needs to be SpatialPointsDataFrame
clip scaler minimum value for weight, default 1 (so weights cannot be below 0)
weight if 1 (default), does not use weights, else pass in string that is the variable name

for weights in feat

Details

This generates a inverse distance weighted sum of features within specified distance of the base
centroid. Weights are clipped to never be below clip value, which prevents division by 0 (or
division by a very small distance number) Uses loops and calculates all pairwise distances, so can
be slow for large base and feature datasets. Consider aggregating/weighting feature dataset if it
is too slow. Useful for quantifying features nearby (Groff, 2014), or for egohoods (e.g. spatial
smoothing of demographic info, Hipp & Boessen, 2013).

Value

A vector of IDW weighted sums

References

Groff, E. R. (2014). Quantifying the exposure of street segments to drinking places nearby. Journal
of Quantitative Criminology, 30(3), 527-548.

Hipp, J. R., & Boessen, A. (2013). Egohoods as waves washing across the city: A new measure of
“neighborhoods”. Criminology, 51(2), 287-327.

See Also

dist_xy() for calculating distance to nearest

count_xy() for counting points inside polygon

kern_xy() for estimating gaussian density of points for features at base polygon xy coords

bisq_xy() to estimate bi-square kernel weights of points for features at base polygon xy coords

idw_xy() to estimate inverse distance weights of points for features at base polygon xy coords

kern_xy 15

Examples

data(nyc_cafe); data(nyc_bor)
gr_nyc <- prep_grid(nyc_bor,15000)
gr_nyc$idwcafe <- idw_xy(gr_nyc,nyc_cafe)
head(gr_nyc@data)

kern_xy Kernel density of nearby areas

Description

Given a base X/Y dataset, calculates guassian kernel density for nearby points in feat dataset

Usage

kern_xy(base, feat, bandwidth, weight = 1)

Arguments

base base dataset (eg gridcells), needs to be SpatialPolygonsDataFrame or Spatial-
PointsDataFrame

feat feature dataset (eg another crime generator), needs to be SpatialPointsDataFrame

bandwidth scaler bandwidth for the normal KDE

weight if 1 (default), does not use weights, else pass in string that is the variable name
for weights in feat

Details

This generates a density of nearby features at particular control points (specified by base). Useful
for risk terrain style feature engineering given nearby crime generators. Loops through all pairwise
distances (and uses dnorm()). So will be slow for large base + feature datasets (although should be
OK memory wise). Consider aggregating/weighting data if feat is very large.

Value

A vector of densities (or weighted densities)

References

Caplan, J. M., Kennedy, L. W., & Miller, J. (2011). Risk terrain modeling: Brokering criminological
theory and GIS methods for crime forecasting. Justice Quarterly, 28(2), 360-381.

Wheeler, A. P., & Steenbeek, W. (2021). Mapping the risk terrain for crime using machine learning.
Journal of Quantitative Criminology, 37(2), 445-480.

16 near_strings1

See Also

dist_xy() for calculating distance to nearest

count_xy() for counting points inside polygon

kern_xy() for estimating gaussian density of points for features at base polygon xy coords

bisq_xy() to estimate bi-square kernel weights of points for features at base polygon xy coords

idw_xy() to estimate inverse distance weights of points for features at base polygon xy coords

Examples

data(nyc_cafe); data(nyc_bor)
gr_nyc <- prep_grid(nyc_bor,15000)
gr_nyc$kdecafe_5k <- kern_xy(gr_nyc,nyc_cafe,8000)
head(gr_nyc@data)
sp::spplot(gr_nyc,zcol='kdecafe_5k')

near_strings1 Strings of Near Repeats

Description

Identifies cases that are nearby each other in space/time

Usage

near_strings1(dat, id, x, y, tim, DistThresh, TimeThresh)

Arguments

dat data frame

id string for id variable in data frame (should be unique)

x string for variable that has the x coordinates

y string for variable that has the y coordinates

tim string for variable that has the time stamp (should be numeric or datetime)

DistThresh scaler for distance threshold (in whatever units x/y are in)

TimeThresh scaler for time threshold (in whatever units tim is in)

Details

This function returns strings of cases nearby in space and time. Useful for near-repeat analysis, or
to identify potentially duplicate cases. This particular function is memory safe, although uses loops
and will be approximately O(n2) time (or more specifically choose(n,2)). Tests I have done on
my machine 5k rows take only ~10 seconds, but ~100k rows takes around 12 minutes with this
code.

https://andrewpwheeler.com/2017/04/12/identifying-near-repeat-crime-strings-in-r-or-python/
https://andrewpwheeler.com/2017/04/12/identifying-near-repeat-crime-strings-in-r-or-python/

near_strings2 17

Value

A data frame that contains the ids as row.names, and two columns:

• CompId, a unique identifier that lets you collapse original cases together

• CompNum, the number of linked cases inside of a component

References

Wheeler, A. P., Riddell, J. R., & Haberman, C. P. (2021). Breaking the chain: How arrests reduce
the probability of near repeat crimes. Criminal Justice Review, 46(2), 236-258.

See Also

near_strings2(), which uses kdtrees, so should be faster with larger data frames, although still
may run out of memory, and is not 100% guaranteed to return all nearby strings.

Examples

Simplified example showing two clusters
s <- c(0,0,0,4,4)
ccheck <- c(1,1,1,2,2)
dat <- data.frame(x=1:5,y=0,

ti=s,
id=1:5)

res1 <- near_strings1(dat,'id','x','y','ti',2,1)
print(res1)

#Full nyc_shoot data with this function takes ~40 seconds
library(sp)
data(nyc_shoot)
nyc_shoot$id <- 1:nrow(nyc_shoot) #incident ID can have dups
mh <- nyc_shoot[nyc_shoot$BORO == 'MANHATTAN',]
print(Sys.time())
res <- near_strings1(mh@data,id='id',x='X_COORD_CD',y='Y_COORD_CD',

tim='OCCUR_DATE',DistThresh=1500,TimeThresh=3)
print(Sys.time()) #3k shootings takes only ~1 second on my machine

near_strings2 Strings of Near Repeats using KDtrees

Description

Identifies cases that are nearby each other in space/time

Usage

near_strings2(dat, id, x, y, tim, DistThresh, TimeThresh, k = 300, eps = 1e-04)

18 near_strings2

Arguments

dat data frame

id string for id variable in data frame (should be unique)

x string for variable that has the x coordinates

y string for variable that has the y coordinates

tim string for variable that has the time stamp (should be numeric or datetime)

DistThresh scaler for distance threshold (in whatever units x/y are in)

TimeThresh scaler for time threshold (in whatever units tim is in)

k the k for the max number of neighbors to grab in the nn2 function in RANN
package

eps the nn2 function returns <=, so to return less (like near_strings1()), needs a
small fudge factor

Details

This function returns strings of cases nearby in space and time. Useful for near-repeat analysis, or to
identify potentially duplicate cases. This particular function uses kdtrees (from the RANN library).
For very large data frames, this will run quite a bit faster than near_strings1 (although still may
run out of memory). And it is not 100% guaranteed to grab all of the pairs. Tests I have done on
my machine ~100k rows takes around 2 minutes with this code.

Value

A data frame that contains the ids as row.names, and two columns:

• CompId, a unique identifier that lets you collapse original cases together

• CompNum, the number of linked cases inside of a component

References

Wheeler, A. P., Riddell, J. R., & Haberman, C. P. (2021). Breaking the chain: How arrests reduce
the probability of near repeat crimes. Criminal Justice Review, 46(2), 236-258.

See Also

near_strings1(), which uses loops but is guaranteed to get all pairs of cases and should be mem-
ory safe.

Examples

Simplified example showing two clusters
s <- c(0,0,0,4,4)
ccheck <- c(1,1,1,2,2)
dat <- data.frame(x=1:5,y=0,

ti=s,
id=1:5)

res1 <- near_strings2(dat,'id','x','y','ti',2,1)

https://andrewpwheeler.com/2017/04/12/identifying-near-repeat-crime-strings-in-r-or-python/
https://andrewpwheeler.com/2017/04/12/identifying-near-repeat-crime-strings-in-r-or-python/

nyc_bor 19

print(res1)

This runs faster than near_strings1
library(sp)
nyc_shoot$id <- 1:nrow(nyc_shoot) #incident ID can have dups
print(Sys.time())
res <- near_strings2(nyc_shoot@data,id='id',x='X_COORD_CD',y='Y_COORD_CD',

tim='OCCUR_DATE',DistThresh=1500,TimeThresh=3)
print(Sys.time()) #around 4 seconds on my machine
head(res)

nyc_bor NYC Boroughs

Description

Spatial file for New York City Borough outlines without water areas

Usage

nyc_bor

Format

A SpatialPolygonsDataFrame object of the NYC Boroughs. This is projected (same coordinates as
shootings). See the Bytes of the Big Apple for any details on the file.

Source

• https://www1.nyc.gov/assets/planning/download/zip/data-maps/open-data/nybb_
21c.zip

nyc_cafe NYC Sidewalk Cafes

Description

Point locations for sidewalk cafes in NYC

Usage

nyc_cafe

https://www.nyc.gov/site/planning/data-maps/open-data.page
https://www1.nyc.gov/assets/planning/download/zip/data-maps/open-data/nybb_21c.zip
https://www1.nyc.gov/assets/planning/download/zip/data-maps/open-data/nybb_21c.zip

20 nyc_shoot

Format

A SpatialPointsDataFrame with point locations Sidwalk cafes in NYC. Note currently includes only
active license locations. Current N around 400 and none in Staten Island.

Source

• https://data.cityofnewyork.us/Business/Sidewalk-Caf-Licenses-and-Applications/
qcdj-rwhu

nyc_liq NYC Alcohol Licenses

Description

Point locations for alcohol locations inside NYC boroughs

Usage

nyc_liq

Format

A SpatialPointsDataFrame with point locations for alcohol licenses inside of NYC. Note that some
of these are not the actual sales place, but another address for the business. Currently over 18,000
addresses.

Source

• https://data.ny.gov/Economic-Development/Liquor-Authority-Current-List-of-Active-Licenses/
hrvs-fxs2

nyc_shoot NYPD Open Data on Shootings

Description

Shootings recorded from the New York City Police Department from 2006 to current.

Usage

nyc_shoot

Format

A SpatialPointsDataFrame with currently over 20k rows and 21 fields, including date/time and
address level geocoordinates for the event. Data from 2006 to currently. See the info on Socrata for
the field name codebook.

https://data.cityofnewyork.us/Business/Sidewalk-Caf-Licenses-and-Applications/qcdj-rwhu
https://data.cityofnewyork.us/Business/Sidewalk-Caf-Licenses-and-Applications/qcdj-rwhu
https://data.ny.gov/Economic-Development/Liquor-Authority-Current-List-of-Active-Licenses/hrvs-fxs2
https://data.ny.gov/Economic-Development/Liquor-Authority-Current-List-of-Active-Licenses/hrvs-fxs2

pai 21

Source

• https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Year-To-Date-/
5ucz-vwe8 for current

• https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Historic-/
833y-fsy8 for historical

pai Predictive Accuracy Index

Description

Given a set of predictions and observed counts, returns the PAI (predictive accuracy index), PEI
(predictive efficiency index), and the RRI (recovery rate index)

Usage

pai(dat, count, pred, area, other = c())

Arguments

dat data frame with the predictions, observed counts, and area sizes (can be a vector
of ones)

count character specifying the column name for the observed counts (e.g. the out of
sample crime counts)

pred character specifying the column name for the predicted counts (e.g. predictions
based on a model)

area character specifying the column name for the area sizes (could also be street
segment distances, see Drawve & Wooditch, 2019)

other vector of strings for any other column name you want to keep (e.g. an ID vari-
able), defaults to empty c()

Details

Given predictions over an entire sample, this returns a dataframe with the sorted best PAI (sorted
by density of predicted counts per area). PAI is defined as:

PAI =
ct/C

at/A

Where the numerator is the percent of crimes in cumulative t areas, and the denominator is the
percent of the area encompassed. PEI is the observed PAI divided by the best possible PAI if
you were a perfect oracle, so is scaled between 0 and 1. RRI is predicted/observed, so if you
have very bad predictions can return Inf or undefined! See Wheeler & Steenbeek (2019) for the
definitions of the different metrics. User note, PEI may behave funny with different sized areas.

https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Year-To-Date-/5ucz-vwe8
https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Year-To-Date-/5ucz-vwe8
https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Historic-/833y-fsy8
https://data.cityofnewyork.us/Public-Safety/NYPD-Shooting-Incident-Data-Historic-/833y-fsy8

22 pai

Value

A dataframe with the columns:

• Order, The order of the resulting rankings

• Count, the counts for the original crimes you specified

• Pred, the original predictions

• Area, the area for the units of analysis
• Cum*, the cumulative totals for Count/Pred/Area
• PCum*, the proportion cumulative totals, e.g. CumCount/sum(Count)

• PAI, the PAI stat

• PEI, the PEI stat

• RRI, the RRI stat (probably should analyze/graph the log(RRI))!

Plus any additional variables specified by other at the end of the dataframe.

References

Drawve, G., & Wooditch, A. (2019). A research note on the methodological and theoretical con-
siderations for assessing crime forecasting accuracy with the predictive accuracy index. Journal of
Criminal Justice, 64, 101625.

Wheeler, A. P., & Steenbeek, W. (2021). Mapping the risk terrain for crime using machine learning.
Journal of Quantitative Criminology, 37(2), 445-480.

See Also

pai_summary() for a summary table of metrics for multiple pai tables given fixed N thresholds

Examples

Making some very simple fake data
crime_dat <- data.frame(id=1:6,

obs=c(6,7,3,2,1,0),
pred=c(8,4,4,2,1,0))

crime_dat$const <- 1
p1 <- pai(crime_dat,'obs','pred','const')
print(p1)

Combining multiple predictions, making
A nice table
crime_dat$rand <- sample(crime_dat$obs,nrow(crime_dat),FALSE)
p2 <- pai(crime_dat,'obs','rand','const')
pai_summary(list(p1,p2),c(1,3,5),c('one','two'))

pai_summary 23

pai_summary Summary Table for Multiple PAI Stats

Description

Takes a list of multiple PAI summary tables (for different predictions) and returns summaries at
fixed area thresholds

Usage

pai_summary(pai_list, thresh, labs, wide = TRUE)

Arguments

pai_list list of data frames that have the PAI stats from the pai function

thresh vector of area numbers to select, e.g. 10 would select the top 10 areas, c(10,100)
would select the top 10 and the top 100 areas

labs vector of characters that specifies the labels for each PAI dataframe, should be
the same length as pai_list

wide boolean, if TRUE (default), returns data frame in wide format. Else returns
summaries in long format

Details

Given predictions over an entire sample, this returns a dataframe with the sorted best PAI (sorted
by density of predicted counts per area). PAI is defined as:

PAI =
ct/C

at/A

Where the numerator is the percent of crimes in cumulative t areas, and the denominator is the
percent of the area encompassed. PEI is the observed PAI divided by the best possible PAI if
you were a perfect oracle, so is scaled between 0 and 1. RRI is predicted/observed, so if you
have very bad predictions can return Inf or undefined! See Wheeler & Steenbeek (2019) for the
definitions of the different metrics. User note, PEI may behave funny with different sized areas.

Value

A dataframe with the PAI/PEI/RRI, and cumulative crime/predicted counts, for each original table

References

Drawve, G., & Wooditch, A. (2019). A research note on the methodological and theoretical con-
siderations for assessing crime forecasting accuracy with the predictive accuracy index. Journal of
Criminal Justice, 64, 101625.

Wheeler, A. P., & Steenbeek, W. (2021). Mapping the risk terrain for crime using machine learning.
Journal of Quantitative Criminology, 37(2), 445-480.

24 pois_contour

See Also

pai() for a summary table of metrics for multiple pai tables given fixed N thresholds

Examples

Making some very simple fake data
crime_dat <- data.frame(id=1:6,

obs=c(6,7,3,2,1,0),
pred=c(8,4,4,2,1,0))

crime_dat$const <- 1
p1 <- pai(crime_dat,'obs','pred','const')
print(p1)

Combining multiple predictions, making
A nice table
crime_dat$rand <- sample(crime_dat$obs,nrow(crime_dat),FALSE)
p2 <- pai(crime_dat,'obs','rand','const')
pai_summary(list(p1,p2),c(1,3,5),c('one','two'))

pois_contour Checks the fit of a Poisson Distribution

Description

Provides contours (for use in graphs) to show changes in Poisson counts in a pre vs post period.

Usage

pois_contour(
pre_crime,
post_crime,
lev = c(-3, 0, 3),
lr = 5,
hr = max(pre_crime) * 1.05,
steps = 1000

)

Arguments

pre_crime vector of crime counts in the pre period

post_crime vector of crime counts in the post period

lev vector of Poisson Z-scores to draw the contours at, defaults to c(-3,0,3)

lr scaler lower limit for where to draw the contour lines, defaults to 5

hr scaler upper limit for where to draw the contour lines, defaults to max(pre_crime)*1.05

steps scaler how dense to make the lines, defaults to 1000 steps

powalt 25

Details

Provides a set of contour lines to show whether increases/decreases in Poisson counts between two
periods are outside of those expected by chance according to the Poisson distribution based on the
normal approximation. Meant to be used in subsequent graphs. Note the approximation breaks
down at smaller N values, so below 5 is not typically recommended.

Value

A dataframe with columns

• x, the integer value

• y, the y-value in the graph for expected changes (will not be below 0)

• levels, the associated Z-score level

References

Drake, G., Wheeler, A., Kim, D.-Y., Phillips, S. W., & Mendolera, K. (2021). The Impact of COVID-
19 on the Spatial Distribution of Shooting Violence in Buffalo, NY. CrimRxiv. https://doi.org/10.21428/cb6ab371.e187aede

Examples

Example use with NYC Shooting Data pre/post Covid lockdowns
Prepping the NYC shooting data
data(nyc_shoot)
begin_date <- as.Date('03/01/2020', format="%m/%d/%Y")
nyc_shoot$Pre <- ifelse(nyc_shoot$OCCUR_DATE < begin_date,1,0)
nyc_shoot$Post <- nyc_shoot$Pre*-1 + 1
Note being lazy, some of these PCTs have changed over time
pct_tot <- aggregate(cbind(Pre,Post) ~ PRECINCT, data=nyc_shoot@data, FUN=sum)
cont_lines <- pois_contour(pct_totPre,pct_totPost)
Now making an ugly graph
sp <- split(cont_lines,cont_lines$levels)
plot(pct_totPre,pct_totPost)
for (s in sp){

lines(sx,sy,lty=2)
}
Can see it is slightly overdispersed, but pretty close!
See https://andrewpwheeler.com/2021/02/02/the-spatial-dispersion-of-nyc-shootings-in-2020/
For a nicer example using ggplot

powalt Power for Small Sample Exact Test

Description

A helper function to calculate power for different alternative distributions

26 powalt

Usage

powalt(SST, p_alt, a = 0.05)

Arguments

SST a small_samptest object created with the small_samptest function

p_alt vector of alternative probabilities to calculate power for

a scaler, alpha level for power estimate, default 0.05

Details

This construct a null distribution for small sample statistics for N counts in M bins. Example use
cases are to see if a repeat offender have a proclivity to commit crimes on a particular day of the
week (see the referenced paper). It can also be used for Benford’s analysis of leading/trailing digits
for small samples.

Value

A PowerSmallSamp object with slots for:

• permutations, a dataframe that contains the exact probabilities and test statistic values for
every possible permutation

• power, the estimated power of the scenario

• alternative, the alternative distribution of probabilities specified

• null, the null distribution (taken from the SST object)

• alpha, the specified alpha level

See Also

small_samptest() for generating the SST object needed to estimate the power

Examples

Counts for different days of the week
d <- c(3,1,2,0,0,0,0) #format N observations in M bins
res <- small_samptest(d=d,type="G")
Power if someone only commits crime on 4 days of the week
alt_p <- c(1/4,1/4,1/4,1/4,0,0,0)
rp <- powalt(res,alt_p) #need to use previously created SST object
print(rp)

Example for Benfords analysis
f <- 1:9
p_fd <- log10(1 + (1/f)) #first digit probabilities
#check data from Nigrini page 84
checks <- c(1927.48,27902.31,86241.90,72117.46,81321.75,97473.96,

93249.11,89658.17,87776.89,92105.83,79949.16,87602.93,
96879.27,91806.47,84991.67,90831.83,93766.67,88338.72,
94639.49,83709.28,96412.21,88432.86,71552.16)

prep_grid 27

To make example run a bit faster
checks <- checks[1:10]
extracting the first digits
fd <- substr(format(checks,trim=TRUE),1,1)
tot <- table(factor(fd, levels=paste(f)))
resG <- small_samptest(d=tot,p=p_fd,type="Chi")
Lets look at alt under equal probabilities (very conservative)
alt_equal <- rep(1/length(p_fd),length(p_fd))
powalt(resG,alt_equal)

prep_grid Creates vector grid cells over study area

Description

Creates grid cells of given size over particular study area.

Usage

prep_grid(outline, size, clip_level = 0, point_over = NULL, point_n = 0)

Arguments

outline SpatialPolygon or SpatialPolygonDataFrame that defines the area to draw grid
cells over

size scaler for the size of the grid cells (one side), in whatever units the outline is in

clip_level , you can clip grid cells if they are not entirely inside the outlined area, defaults
to 0 so any cells at least touching are included

point_over default NULL, but can pass in SpatialPoints and will only include grid cells that
have at least one point

point_n default 0, only used if passing in point_over. Will return only grid cells with
greater than point_n points

Details

This generates a vector grid over the study area of interest. Intentionally working with vector data
for use with other feature engineering helper functions (that can pass in X/Y).

Value

A SpatialPolygonDataFrame object with columns

• id, integer id value (not the same as row.names!)

• x, x centroid of grid cell

• y, y centroid of grid cell

• cover, proportion that grid cell is covered by outline

• count, optional (only if you pass in point_over)

28 prep_hexgrid

References

Wheeler, A. P. (2018). The effect of 311 calls for service on crime in DC at microplaces. Crime &
Delinquency, 64(14), 1882-1903.

Wheeler, A. P., & Steenbeek, W. (2021). Mapping the risk terrain for crime using machine learning.
Journal of Quantitative Criminology, 37(2), 445-480.

Examples

library(sp) #for sp plot methods
large grid cells
data(nyc_bor)
res <- prep_grid(nyc_bor,5000)
plot(nyc_bor)
plot(res,border='BLUE',add=TRUE)

clipping so majority of grid is inside outline
res <- prep_grid(nyc_bor,2000,clip_level=0.5)
plot(nyc_bor)
plot(res,border='BLUE',add=TRUE)

only grid cells that have at least one shooting
data(nyc_shoot)
res <- prep_grid(nyc_bor,2000,clip_level=0,nyc_shoot)
plot(nyc_bor)
plot(res,border='RED',add=TRUE)

prep_hexgrid Creates hexagon grid cells over study area

Description

Creates hexagon grid cells of given area over particular study area.

Usage

prep_hexgrid(outline, area, clip_level = 0, point_over = NULL, point_n = 0)

Arguments

outline SpatialPolygon or SpatialPolygonDataFrame that defines the area to draw hex-
grid cells over

area scaler for the area of the grid cells in whatever units the outline is in

clip_level , you can clip grid cells if they are not entirely inside the outlined area, defaults
to 0 so any cells at least touching are included. Specify as proportion (so should
not be greater than 1!)

prep_hexgrid 29

point_over default NULL, but can pass in SpatialPoints and will only include grid cells that
have at least one point

point_n default 0, only used if passing in point_over. Will return only grid cells with
greater than point_n points

Details

This generates a vector hex grid over the study area of interest. Hexgrids are sometimes preferred
over square grid cells to prevent aliasing like artifacts in maps (runs of particular values).

Value

A SpatialPolygonDataFrame object with columns

• id, integer id value (not the same as row.names!)

• x, x centroid of grid cell

• y, y centroid of grid cell

• cover, optional (only if clip_level > 0) proportion that grid cell is covered by outline

• count, optional (only if you pass in point_over), total N of points over

References

Circo, G. M., & Wheeler, A. P. (2021). Trauma Center Drive Time Distances and Fatal Outcomes
among Gunshot Wound Victims. Applied Spatial Analysis and Policy, 14(2), 379-393.

Examples

library(sp) #for sp plot methods
#Base example, some barely touch
hnyc <- prep_hexgrid(nyc_bor,area=20000^2)
plot(hnyc)
plot(nyc_bor,border='red',add=TRUE)
#Example clipping hexagons that have dongle hexagons
hex_clip <- prep_hexgrid(nyc_bor,area=20000^2,clip_level=0.3)
plot(hex_clip,border='blue')
plot(nyc_bor,border='red',add=TRUE)
summary(hnyc)

#Example clipping hexagons with no overlap crimes
hnyc <- prep_hexgrid(nyc_bor,area=4000^2,point_over=nyc_shoot)
plot(hnyc)
plot(nyc_shoot,pch='.',add=TRUE)

30 scanw

scanw Scan statistic approximation for counts in moving window

Description

Naus scan statistic approximation for Poisson counts in moving window over a particular time
period

Usage

scanw(L, k, mu, n)

Arguments

L number of time periods in the window

k window scan time period

mu Poisson averaged per single time period

n number of time periods

Details

When examining counts of items happening in a specific, discrete set of windows, e.g. counts of
crime per week, one can use the Poisson PMF to determine the probability of getting an observation
over a particular value. For example, if you have a mean of 1 per week, the probability of observing
a single week with a count of 6 or more is ppois(5,1,FALSE) , approximately 0.0006. But if you
have monitored a series over 5 years, (260 weeks), then the the expected number of seeing at least
one 6 count in the time period is ppois(5,1,FALSE)*260 , over 15%.

Now imagine we said "in this particular week span, I observed a count of 6". So it is not in pre-
specified week, e.g. Monday through Sunday, but examining over any particular moving window.
Naus (1982) provides an approximation to correct for this moving window scan. In this example, it
ends up being close to 50% is the probability of seeing a moving window of 6 events.

Value

A single numeric value, the probability of observing that moving window count

References

Aberdein, J., & Spiegelhalter, D. (2013). Have London’s roads become more dangerous for cy-
clists?. Significance, 10(6), 46-48.

Naus, J.I. (1982). Approximations for distributions of scan statistics. Journal of the American
Statistical Association, 77, 177-183.

small_samptest 31

Examples

Spiegelhalter example (replicates COOLSerdash's estimates in comments)
scanw(208,2,0.6,6)

Example in description
scanw(260,1,1,6)

small_samptest Small Sample Exact Test for Counts in Bins

Description

Small sample test statistic for counts of N items in bins with particular probability.

Usage

small_samptest(d, p = rep(1/length(d), length(d)), type = "G", cdf = FALSE)

Arguments

d vector of counts, e.g. c(0,2,1,3,1,4,0) for counts of crimes in days of the week

p vector of baseline probabilities, defaults to equal probabilities in each bin

type string specifying "G" for likelihhood ratio G stat (the default), "V" for Kuipers
test (for circular data), "KS" for Komolgrov-Smirnov test, and "Chi" for Chi-
square test

cdf if FALSE (the default) generates a new permutation vector (using exactProb),
else pass it a final probability dataset previously created

Details

This construct a null distribution for small sample statistics for N counts in M bins. Example use
cases are to see if a repeat offender have a proclivity to commit crimes on a particular day of the
week (see the referenced paper). It can also be used for Benford’s analysis of leading/trailing digits
for small samples. Referenced paper shows G test tends to have the most power, although with
circular data may consider Kuiper’s test.

Value

A small_sampletest object with slots for:

• CDF, a dataframe that contains the exact probabilities and test statistic values for every possible
permutation

• probabilities, the null probabilities you specified

• data, the observed counts you specified

• test, the type of test conducted (e.g. G, KS, Chi, etc.)

32 small_samptest

• test_stat, the test statistic for the observed data
• p_value, the p-value for the observed stat based on the exact null distribution
• AggregateStatistics, here is a reduced form aggregate table for the CDF/p-value calcula-

tion

If you wish to save the object, you may want to get rid of the CDF part, it can be quite large. It
will have a total of choose(n+n-1,m-1) total rows, where m is the number of bins and n is the total
counts. So if you have 10 crimes in 7 days of the week, it will result in a dataframe with choose(7
+ 10 - 1,7-1), which is 8008 rows. Currently I keep the CDF part though to make it easier to
calculate power for a particular test

References

Nigrini, M. J. (2012). Benford’s Law: Applications for forensic accounting, auditing, and fraud
detection. John Wiley & Sons.

Wheeler, A. P. (2016). Testing Serial Crime Events for Randomness in Day-of-Week Patterns with
Small Samples. Journal of Investigative Psychology and Offender Profiling, 13(2), 148-165.

See Also

powalt() for calculating power of a test under alternative

Examples

Counts for different days of the week
d <- c(3,1,1,0,0,1,1) #format N observations in M bins
res <- small_samptest(d=d,type="G")
print(res)

Example for Benfords analysis
f <- 1:9
p_fd <- log10(1 + (1/f)) #first digit probabilities
#check data from Nigrini page 84
checks <- c(1927.48,27902.31,86241.90,72117.46,81321.75,97473.96,

93249.11,89658.17,87776.89,92105.83,79949.16,87602.93,
96879.27,91806.47,84991.67,90831.83,93766.67,88338.72,
94639.49,83709.28,96412.21,88432.86,71552.16)

To make example run a bit faster
c1 <- checks[1:10]
#extracting the first digits
fd <- substr(format(c1,trim=TRUE),1,1)
tot <- table(factor(fd, levels=paste(f)))
resG <- small_samptest(d=tot,p=p_fd,type="Chi")
resG

#Can reuse the cdf table if you have the same number of observations
c2 <- checks[11:20]
fd2 <- substr(format(c2,trim=TRUE),1,1)
t2 <- table(factor(fd2, levels=paste(f)))
resG2 <- small_samptest(d=t2,p=p_fd,type="Chi",cdf=resG$CDF)

vor_sp 33

vor_sp Voronoi tesselation from input points

Description

Given an outline and feature points, calculates Voronoi areas

Usage

vor_sp(outline, feat)

Arguments

outline object that can be coerced to a spatstat window via as.owin (so SpatialPolygon-
DataFrame, SpatialPolygon, owin)

feat A SpatialPointsDataFrame object (if duplicate X/Y coordinates will get errors)

Details

Outline should be a single polygon area. Uses spatstats dirichlet and window to compute the
Voronoi tesselation. Will generate errors if feat has duplicate X/Y points. Useful to create areas
for other functions, such as dcount_xy() or count_xy(). Common spatial unit of analysis used in
crime research when using points (e.g. intersections and street midpoints).

Value

A SpatialPolygonsDataFrame object, including the dataframe for all the info in the orignal feat@data
dataframe.

References

Wheeler, A. P. (2018). The effect of 311 calls for service on crime in DC at microplaces. Crime &
Delinquency, 64(14), 1882-1903.

Wheeler, A. P. (2019). Quantifying the local and spatial effects of alcohol outlets on crime. Crime
& Delinquency, 65(6), 845-871.

Examples

library(sp) # for sample/coordinates
data(nyc_bor)
nyc_buff <- buff_sp(nyc_bor,50000)
po <- sp::spsample(nyc_buff,20,'hexagonal')
po$id <- 1:dim(coordinates(po))[1] # turns into SpatialDataFrame
vo <- vor_sp(nyc_buff,po)
plot(vo)
plot(nyc_buff,border='RED',lwd=3, add=TRUE)

34 wdd

wdd Estimates the WDD Test

Description

Estimates the weighted displacement difference test from Wheeler & Ratcliffe, A simple weighted
displacement difference test to evaluate place based crime interventions, Crime Science

Usage

wdd(
control,
treated,
disp_control = c(0, 0),
disp_treated = c(0, 0),
time_weights = c(1, 1),
area_weights = c(1, 1, 1, 1),
alpha = 0.1,
silent = FALSE

)

Arguments

control vector with counts in pre,post for control area

treated vector with counts in pre,post for treated area

disp_control vector with counts in pre,post for displacement control area (default c(0,0))

disp_treated vector with counts in pre,post for displacement treated area (default c(0,0))

time_weights vector with weights for time periods for pre/post (default c(1,1))

area_weights vector with weights for different sized areas, order is c(control,treated,disp_control,disp_treated)
(default c(1,1,1,1))

alpha scaler alpha level for confidence interval (default 0.1)

silent boolean set to TRUE if you do not want anything printed out (default FALSE)

Details

The wdd (weighted displacement difference) test is an extensions to differences-in-differences when
observed count data pre/post in treated control areas. The test statistic (ignoring displacement areas
and weights) is:

WDD = ∆T −∆Ct

where ∆T = T1 − T0, the post time period count minus the pre time period count for the treated
areas. And ditto for the control areas, Ct. The variance is calculated as:

T1 + T0 + Ct1 + Ct0

https://crimesciencejournal.biomedcentral.com/articles/10.1186/s40163-018-0085-5
https://crimesciencejournal.biomedcentral.com/articles/10.1186/s40163-018-0085-5

wdd 35

that is this test uses the normal approximation to the Poisson distribution to calculate the standard
error for the WDD. So beware if using very tiny counts – this approximation is less likely to be
applicable (or count data that is Poisson, e.g. very overdispersed).

This function also incorporates weights for different examples, such as differing pre/post time peri-
ods (e.g. 2 years in pre and 1 year in post), or different area sizes (e.g. a one square mile area vs a
two square mile area). The subsequent test statistic can then be interpreted as changes per unit time
or changes per unit area (e.g. density) or both per time and density.

Value

A length 9 vector with names:

• Est_Local and SE_Local, the WDD and its standard error for the local estimates

• Est_Displace and SE_Displace, the WDD and its standard error for the displacement areas

• Est_Total and SE_Total, the WDD and its standard error for the combined local/displacement
areas

• Z, the Z-score for the total estimate

• and the lower and upper confidence intervals, LowCI and HighCI, for whatever alpha level you
specified for the total estimate.

References

Wheeler, A. P., & Ratcliffe, J. H. (2018). A simple weighted displacement difference test to evaluate
place based crime interventions. Crime Science, 7(1), 1-9.

See Also

wdd_harm() for aggregating multiple WDD tests into one metric (e.g. based on crime harm weights)
e_test() for checking the difference in two Poisson means

Examples

No weights and no displacement
cont <- c(20,20); treat <- c(20,10)
wdd(cont,treat)

With Displacement stats
disptreat <- c(30,20); dispcont <- c(30,30)
wdd(cont,treat,dispcont,disptreat)

With different time periods for pre/post
wdd(cont,treat,time_weights=c(2,1))

With different area sizes
wdd(cont,treat,dispcont,disptreat,area_weights=c(2,1.5,3,3.2))

You can technically use this even without pre (so just normal based approximation)
just put in 0's for the pre data (so does not factor into variance)
res_test <- wdd(c(0,20),c(0,10))
twotail_p <- pnorm(res_test['Z'])*2

https://andrewpwheeler.com/2021/01/09/the-wdd-test-with-different-pre-post-time-periods/
https://andrewpwheeler.com/2021/01/09/the-wdd-test-with-different-pre-post-time-periods/
https://andrewpwheeler.com/2021/02/23/the-wdd-test-with-different-area-sizes/

36 wdd_harm

print(twotail_p) #~0.068
e-test is very similar
e_test(20,10) #~0.069

wdd_harm Combines Multiple WDD Tests

Description

Combines multiple weighted displacement difference tests into one final weighted harm metric.

Usage

wdd_harm(est, se, weight, alpha = 0.1, silent = FALSE)

Arguments

est vector with WDD estimates (e.g. difference in crime counts for treated vs con-
trols)

se vector with standard errors for WDD estimates

weight vector with weights to aggregate results

alpha scaler alpha level for confidence interval (default 0.1)

silent boolean, do not print stat messages (default FALSE)

Details

This test combines multiple wdd estimates with different weights. Created to combine tests for
crime harm weights.

Value

A length 5 vector with names:

• HarmEst, the combined harm estimate

• SE_HarmEst its standard error

• Z, the Z-score

• and the lower and upper confidence intervals, LowCI and HighCI, for whatever alpha level you
specified.

See Also

wdd() for estimating the individual wdd outcomes

https://andrewpwheeler.com/2020/11/19/amending-the-wdd-test-to-incorporate-harm-weights/
https://andrewpwheeler.com/2020/11/19/amending-the-wdd-test-to-incorporate-harm-weights/

wdd_harm 37

Examples

Creating wdd tests for three different crimes and combining
rob <- wdd(c(20,20),c(20,10))
burg <- wdd(c(30,30),c(25,20))
theft <- wdd(c(80,60),c(70,20))
dat = data.frame(rbind(rob,burg,theft))
passing those columns now to the wdd_harm function
harm_weights <- c(10,5,1)
wdd_harm(datEst_Local,datSE_Local,harm_weights)

Index

∗ datasets
nyc_bor, 19
nyc_cafe, 19
nyc_liq, 20
nyc_shoot, 20

bisq_xy, 2
bisq_xy(), 3, 7–9, 14, 16
buff_sp, 4

check_pois, 5
count_xy, 6
count_xy(), 3, 8, 9, 14, 16

dcount_xy, 7
dcount_xy(), 7, 9
dist_xy, 8
dist_xy(), 3, 7, 8, 14, 16

e_test, 9
e_test(), 35

hex_area, 11
hex_area(), 12, 13
hex_dim, 12
hex_dim(), 11, 13
hex_wd, 13
hex_wd(), 11, 12

idw_xy, 14
idw_xy(), 3, 7–9, 14, 16

kern_xy, 15
kern_xy(), 3, 7–9, 14, 16

near_strings1, 16
near_strings1(), 18
near_strings2, 17
near_strings2(), 17
nyc_bor, 19
nyc_cafe, 19

nyc_liq, 20
nyc_shoot, 20

pai, 21
pai(), 24
pai_summary, 23
pai_summary(), 22
pois_contour, 24
powalt, 25
powalt(), 32
prep_grid, 27
prep_hexgrid, 28

scanw, 30
small_samptest, 31
small_samptest(), 26

vor_sp, 33

wdd, 34
wdd(), 10, 36
wdd_harm, 36
wdd_harm(), 35

38

	bisq_xy
	buff_sp
	check_pois
	count_xy
	dcount_xy
	dist_xy
	e_test
	hex_area
	hex_dim
	hex_wd
	idw_xy
	kern_xy
	near_strings1
	near_strings2
	nyc_bor
	nyc_cafe
	nyc_liq
	nyc_shoot
	pai
	pai_summary
	pois_contour
	powalt
	prep_grid
	prep_hexgrid
	scanw
	small_samptest
	vor_sp
	wdd
	wdd_harm
	Index

